

Gamifying motion control assessments using leap motion controller

Dimitris Fotopoulos, Vassilis Kilintzis, Achileas Chytas, Paris Mavromoustakos, Theodoros Loizidis and Ioanna Chouvarda

Outline

- Introduction
- Motivation
- Our solution
- Requirements
- Technologies used
- Implementation
- Visualization of data
- Example material
- Future steps

Introduction

- Focus of this paper
- Serious games/exergames and rehabilitation
 - Situations they are applicable
- Why exergames?

Motivation

- Requirements for a successful therapy:
 - Trained therapists / professionals
 - Necessary equipment
 - Adequate number of therapy sessions
- Lack of motivation
- Need of means for extensive and in-depth analysis

Our solution

- Our implementation is based on these key concepts:
 - Therapeutic exercises in virtual gaming world with a. an interactive scenario
 b. a set of goals
- > Tele-rehabilitation should be feasible, to remotely monitor:
 - Progress
 - Adherence to the therapy
- Can be used by:
 - Rehabilitation professionals, physiotherapists
 - Rehab labs or institutions
 - Individuals with motion disorders

Development requirements

- Interaction through physical movement detected with biosensors.
- Movement associated with therapeutic –
 rehabilitation process and entertainment.
- Support of both supervised use and unsupervised use.
- Low cost infrastructure.
- Monitoring of response via stored activity data.

Leap Motion Controller

- Low cost sensor that can track position of hands, fingers and joints in 3D space.
 - The device's tracking accuracy has been studied and is used widely in virtual rehabilitation projects
 - Uses 2 VGA cameras and 3 infrared LEDs and the field view is a reverse pyramoid shape

Unity 3D

"Unity3D is a powerful cross-platform 3D engine. Anyone can create 3d games and applications for mobiles, desktop, web and consoles."

Implementation

Game metaphor – physical exercise

Goal of the game – waypoints

 Customization and experimental parameters

Types of exercises

- ▶ 1st type of exercise:
 - Flexion
 - Extension

- ▶ 2nd type of exercise:
 - Pronation
 - Supination

*Images from <u>https://cnx.org/</u> under the Creative Commons Attribution license.

But the data?

- Core benefit of this type of rehabilitation is the collection of data that can found use in:
 - Clarification of patient's status
 - Tailoring of the therapy
- Further advantage is that
 we can produce visualizations

Visualization

Session visualization

 \rightarrow

 \rightarrow

Signal .gif

Game screenshots

Example video

Future steps

- More extensive analysis and evaluation of the process
- Test the use of other sensors and compare them or even try a combination of them
- Bring rehabilitation in the patient's house after appropriate training (un-supervised rehab)

Questions

?

