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Abstract: This paper describes the methodology for analyzing upper limb motion data derived from a novel Gamified 

Motion Control Assessment platform that is based on a virtual 3D game environment. The gamified approach 

targets patients experiencing upper-limb movement hindrances, typically caused by neuromuscular disorders. 

The leap motion controller is used for interaction. The game guides the avatar to move along the X and Y axis 

following specific paths. The avatar mimics the movement of the user's hand that performs these movements 

for rehabilitation. In order to use this method for the training and assessment patient’s motion, a quantified 

approach that uses the game-based motion for patient assessment is required. Besides simple game scores that 

are often used, the proposed data analysis aims to elaborate on the discrimination between pathological and 

healthy movement with a machine learning approach, as well as the quantification of the patient’s progress 

over time. For this purpose, movement and performance-related features were extracted from the leap sensor 

recordings and their value was explored towards characterizing the patient state and progress in detail. A 

dataset with multiple recordings from patients and healthy individuals was used for this purpose. All patients 

suffered from neuromuscular disorders. The features with the highest discriminatory value between the two 

groups were subsequently used to develop a set of classifiers for different sets of movements (e.g., horizontal, 

diagonal, vertical). A patient was left out of the classifier creation procedure and used for external validation. 

The models achieved high accuracy (92.13%). These results are deemed promising for the quantification of a 

patient’s progress. 

1 INTRODUCTION 

Motor control is a complex process or a set of sub-

processes that involves the coordination of muscles 

and limbs in order to perform a motor skill either 

voluntary or as a reflex. Humans from birth are 

trained in motor control by integrating sensory-motor 

information, a procedure called Motor-learning. 

Firstly, through observation and later via repetition, 

movements are consolidated in the Central Nervous 

System (CNS). Certain pathologies or injuries affect 

the CNS resulting in the loss of cognitive functions of 
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the brain. This may impact several motor functions 

and cause partial or complete loss. 

Rehabilitation programs aim to detect motor 

deficits and help patients regain control of their 

movements through motor learning. The standard 

procedure is the repetitive training of isolated 

movements’ correct form.  

There has been an increasing amount of studies 

regarding the assistance of physical rehabilitation and 

conventional treatment methods via technology 

(Meijer et al., 2018),(Ang and Guan, 2013). This 

interest in technology-based rehabilitation has led to 
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the development of an emerging domain that 

combines exergames, gamification mechanisms and 

traditional rehabilitation methodologies (Smeddinck 

et al., 2015). These novel treatment methodologies 

combine software and hardware to facilitate the 

process of Motor Learning, by introducing an 

efficient (Veerbeek et al., 2017) and more rewarding 

way of performing a series of repetitive and 

functional movements, which are required for the 

rehabilitation of patients with motor deficits. 
Gamification and serious gaming are regarded as 

means for inducing positive health behavioural 
change (Sardi et al., 2017), but there is still lack of 
solid evidence and consolidated approaches and 
means for quantification progress. 

There are various research approaches that are 
integrating Leap motion sensor in their system. One 
example is a system that was suggested in 2014 
(Charles et al., 2014) for the rehabilitation of wrist 
and fingers that used Leap as a part of a game that 
engaged the user to pick up various objects and place 
them correctly in order to form a specific shape or 
construction. Another example is a system (Elnaggar 
and Reichardt, 2017) that was also suggested for the 
rehabilitation of hand, wrist and fingers and was 
trying to exercise hand’s grip and movement.  

Overall, gamification mechanisms integrated 
appropriately in standard therapy regimens and 
protocols, have been found to be sufficiently effective 
in a wide range of diseases involving motion, for 
example in stroke (Henderson et al., 2007; Tamayo-
Serrano et al., 2018) or in Parkinson’s disease with 
leap motion (Oña et al., 2018).  

The current work is based on a custom 

rehabilitation platform that can be used as a tool for 

the medical treatment of patients with physical 

impairments of the upper limbs (Chytas et al., 2020), 

including arm, axilla and shoulder. It supports the 

idea of a ‘gaming as a health service’ (GaaHS), 

providing the physician the ability to remotelly 

monitor patients and adjust their treatmeant. The 

platform is aiming to optimize the Motor Control and 

Learning processes by providing an engaging way for 

rehabilitation exercise execution along with a set of 

statistical tools that evaluate quantitatively the 

patient's upper limb motion and overall performance.  

The analysis of upper limb motion is a challenging 

task due to its multidimensional nature. We propose 

a novel set of features that characterizes upper limb 

motion along with gameplay related features. Our aim 

is to establish a baseline that can distinguish between 

healthy and pathological movement and additionally 

quantify the patient's rehabilitaion progress and 

improvement. 

2 BACKGROUND AND 

RATIONALE 

Currently, the GaaHS platform (Chytas et al., 2020) 
consists of one game scenario that incorporates basic 
rehabilitation exercises in its mechanics. It follows 
the flying simulation paradigm. The user is asked to 
guide a red polygon airplane (avatar) through 
orthogonal game objects (gates) that are placed across 
the scene. The interaction between the user and his 
avatar is achieved by the camera sensor Leap Motion 
Controller, which utilizes computer vision 
technology to recognize hands in its field of view and 
calculates a set of measurements that describe them. 
The general therapy protocol focuses on these 
exercise movements: horizontal adduction/abduction 
of the shoulder, and supination/pronation of the 
forearm. The hand is placed above the sensor and 
moves along the horizontal and vertical plane, as well 
as rotate along the Z-axis. In the virtual world of the 
game, the airplane mimics the hand’s movement. 
Because of the strictly defined set of movement 
exercises, it was a requirement-based design decision 
that the airplane avatar of the game cannot move with 
six degrees of freedom. Thus, the airplane’s 
movement is confined to the X and Y plane, a 
restriction that made it quite challenging to achieve a 
degree of immersion of the user in the game world. 
The gate objects that the user leads the aircraft 
through, appears in a predefined 3x3 grid Figure 2. 
The goal is the highest possible number of repetitions, 
so the condition for the end of a game session is either 
a time limit or a limit on the number of the gates. A 
secondary objective of the game is to collect the 
‘coins’ that are placed in the middle of a gate. This 
provides the user with a clear target of where he/she 
should aim to “fly” through, and it might later be 
helpful in discerning patterns during the analysis 
process.  

After the completion of the course, a score is 
awarded to the user that represents the number of 
gates he/she managed to go through. A rough metric 
of the performance is the percentage of successful 
gates. This score is useful both as a means for 
motivating the user and as a summarized, high level 
index of the user’s ability to perform the task, useful 
for the rehabilitation healthcare professional. 
However, it is questionable whether this index is 
adequately informative for the patient’s detailed 
condition or for specific problems in movement and 
their progress over time. 

 
Figure 1: Movement of the hand and its effect on  

the virtual world of the game 
 



Similar studies use the respective game score and 
task completion time features to evaluate the patient’s 
progress (De Leon et al., 2014) while others delve 
further into  analysing the trajectory using motion 
features (Tang et al., 2017). We propose a new 
strategy that enables detailed evaluation combining 
elements of both approaches. We split hand 
movement into discrete segments resulting in more 
detailed time characteristics,  use derived trajectory 
characteristics (such as acceleration per axis), we also 
include a variation of our game score (proximity to 
the target instead of success or failure) and 
distinguish between groups of movement that are 
activated by different muscle groups. Our approach is 
based on fine grained time features with a 
combination of commonly used motion 
characteristics that derive from medical needs and are 
meaningful to the physician. 

 
Figure 2: Gates 3x3 grid where the gates appear 

3 MATERIAL AND METHODS 

The main focus of the analysis on the current stage is 
to determine the variables that are going to be 
examined and explore the differences between 
healthy and pathological movement. 

Our hypothesis is that the proposed movement 
features differ among healthy subjects and patients, 
and that they reflect changes over time. Regarding the 
classification of movement, a two-phase procedure 
was followed. In Phase 1, we examined if the creation 
of such classifiers is feasible using a dataset 
consisting of healthy subjects and patients. In Phase 
2, we used external data to verify the results. 

3.1 Data 

For this analysis, we collected data from 8 subjects; 3 
patients undergoing rehabilitation and 5 healthy 
individuals not diagnosed with a related motor control 
/ central neural system disorder. Healthy subjects 
were of ages 25-38 with one of them being female 
(20%), while all patients are males in their 20s. The 
patients performed the games using the hand in need 
of physiotherapy (right hand in both cases) while the 
healthy subjects were using their dominant hand 
(20% were left-handed). Those gaming sessions were 
in addition to the routinely prescribed physiotherapy 
treatment the patients were receiving at that time. The 
data acquisition protocol was approved by the Bio-
ethics committee at the Aristotle University of 
Thessaloniki (AUTH) and the patients signed a 
consent form. 

The data acquisition for the healthy subjects 
lasted 2 weeks, while the patients’ data were retrieved 
based on the amount of time they were receiving 
physiotherapy, the occurrence rate of the therapy, and 
the settings the physician deemed proper based on 
their current condition and general progress. An 
upcoming pilot will follow a more refined protocol 
for all participants. The healthy subjects performed 2 
sessions per week for 2 weeks (4 sessions total). The 
first week’s sessions were performed in normal 
difficulty settings while the second week’s, in hard 
difficulty settings. Each session consisted of 10 
games and each game had a duration of 90 seconds. 
The difficulty settings affect the avatar’s constant 
movement rate on the Z-axis, substantially reducing 
the time required for the avatar to move from one gate 
to another. Of note, according to all healthy subjects’ 
feedback, the normal settings were more bothersome 
than the hard ones since the subjects were supposed 
to keep their hand steady for a longer period. Each 
healthy subject (H1-5) had 4 gaming sessions, 40 
games and 800 gates. Percentages of gates the 



subjects H1-5 successfully navigated through were 1, 
0.942, 0.985, 0.995 and 1 respectively. 

As far as the patients are concerned, their data 
have been collected in a span of 9 months (P1) and 6 
months (P2 and P3) accordingly. Specifically, P1 had 
39 gaming sessions, 652 games played, and went 
through 19033 gates, P2 had 24 gaming sessions, 378 
games and 10300 gates, while P3 corresponding 
statistics are 16 gaming sessions 184 games and 2107 
gates. The difficulty settings were gradually changed 
from normal to hard to eventually very hard in the 
span of their treatment for P1 and P2. P3 difficulty 
settings remained to normal. Percentages of 
successful gates for the patients P1-3 were 0.946, 
0.969 and 0.718 respectively.  

The dataset used for the classification stage 
consisted of 4000 gates for the healthy subjects H1-5 
and 29333 gates for patients P1,2. The gates were 
grouped based on the type of movement, vertical, 
horizontal, diagonal and the direction (e.g., top to 
bottom, etc.). P3 was used as an external validation 
dataset. 

The distinction of direction was deemed 
important from a medical viewpoint, since such 
movements involve the activation of different muscle 
groups, e.g., horizontal abduction (Latissimus dorsi 
and posterior fibers of deltoid) and adduction 
(Pectoralis major and anterior fibers of deltoid) 
(Elzanie and Varacallo, 2018). This distinction also 
makes sense from a statistical analysis point of view 
(e.g., the metrics of the X-axis are expected to differ 
when the subject performs a horizontal movement vs 
a vertical one). 

3.2 Feature Extraction 

The raw data points acquisition rate is tied to the 
frame rate at which the game runs. Although the 
frame rate for the game was capped at 60 fps it can 
occasionally drop below 60, an occurrence more 
common in systems with low computational 
capabilities. 

Another issue was the artefacts that occurred 
when the leap sensor failed momentarily to correctly 
identify the subject’s hand, typically other objects 
interrupting the sensor’s field of view or nearby light 
sources causing interferences. The abrupt changes in 
the hand trajectory were identified using a high pass 
filter, followed by an evaluation of the neighbouring 
area in order to determine which part of the 
movement was the artefact (if any). The data points 
that were deemed as artefacts were subsequently 
removed. Firstly by removing time windows that had 
more than 25% out of the expected samples missing 
and afterwards during the analysis. 

As a next step, and in order to address both the 
above issues and to facilitate an analysis that supports 

exploration in the frequency domain, the time-series 
of the hand coordinates were interpolated at a steady 
rate of equivalent to 60 fps. 

The gameplay can be distinguished into parts. 
Each part corresponds to the period between two 
consecutive gates (time window Wi ). The gates (Gi) 
are moving towards the avatar at a controlled pace. 
Therefore, all the time windows have the same 
duration, with the exception of the first gate, which 
appears a few moments after the start, to provide the 
user ample time to get accustomed to the game. 

Each time window (Wi) is further distinguished 
into 3 different sub-periods (Figure 3). Those periods 
were detected by examining the velocity on X and Y-
axes, considering the direction and the proximity to 
the target gate. 

1. Response (DT1: t0-t1): it refers to the time 

period  starting when the user has reached 

the Gi gate until  they become aware of the 

upcoming gate Gi+1, and they begin to 

move towards it. This is characterized as a 

Steady state (orange). 

2. Movement (DT2: t1-t2): it refers to the time 

period where the user is moving from Gi 

towards the upcoming gate Gi+1. This is a 

Movement state (green). 

3. Stabilization (DT3: t2-t3): it refers to the 

time period from the time point that the 

user has arrived to the X, Y coordinates that 

correspond to the Gi+1 gate and is waiting 

to reach it (plane pass through the gate) 

until the time the avatar crosses the gate. 

This is a Steady state (red). 

 
Figure 3: Movement from gate Gi-1 to Gi . The Si,j 

represents the hand position on each j frame for every i 

window (Wi). 

 
The features currently examined involve the 

description of the movement in the time domain 
(velocity, acceleration, trajectory, jitter, etc.) The 
distance and the metrics that derive from it (velocity 
and acceleration) are measured in in-game units.  



• Durations of DT1/DT2/DT3 in 

milliseconds 

• Mean/SD Velocity DT1/DT2/DT3 

X/Y/both: Mean/Standard deviation of the 

hand velocity on parts DT1/DT2/DT3 on 

axis X/Y/ both of them. 

• Mean Velocity DT2 start calculated during 

the first 0.25 seconds of the DT2 part. 

• Mean/SD Acceleration DT1/DT2/DT3 

X/Y/both: Mean/Standard deviation of the 

hand acceleration on parts DT1/DT2/DT3 

on axis X/Y/ both axes. 

• Distances total travelled per time window 

and total, ratio of minimum movement 

required to actual 

• Total Distance/ Total Distance 

DT1/DT2/DT3: actual distance travelled 

during the whole Wi, on parts 

DT1/DT2/DT3, respectively. 

• Minimum distance (final): minimum 

distance from the center of the gate during 

the whole Wi movement/ during the final 

0.5 sec of the Wi movement 

This amounted to a total of 28 features that were 
subsequently examined. 

3.3 Analysis 

The gates were grouped based on the type of 
movement, vertical, horizontal, diagonal and 
direction. Right to Left (r2l) Left to Right (l2r) , Up to 

Bottom (u2d), Bottom to Up (d2u) Top Left to Bottom 

Right (dg1) Top Right to Bottom Left (dg2), Bottom Left 

to Top Right (dg3), Bottom Right to Top Left (dg4). 

The analysis was focused on the subject’s 
performance during the traversal from one gate to 
another. For each subject, all the calculated 
movement features were grouped together without 
the distinction of individual games or sessions. The 
order in which each gate was traversed was kept intact 
and as such, we were able to examine the subject’s 
progress through time. In more detail, the analysis 

consists of following steps: 

1. In each cross-validation round, split the 

dataset into two parts: a) Train: 1 patient 

(19033 or 10300 gates), 4 healthy subjects 

(3200 gates), b) Test: 1 patient (19033 or 

10300 gates), 1 healthy subject (800 gates) 

2. Use one direction at a time (this reduces the 

number of gates used for the training and 

testing, e.g. out of the 19033 gates P1 has, 

2203 belong in the u2d category) 

3. On the training dataset, for each feature, 

detect values that are outside the range of 

four times the standard deviation. A single 

out of bounds value would cause that gate 

to be excluded. This further addresses the 

artefact problem during data acquisition. 

4. Test the features for normality using the 

Shapiro–Wilk test (Shapiro and Wilk, 

2015) for normality. 

5. If the variables were normally distributed, 

the analysis of variation (AOV) was used, 

otherwise the Kruskal–Wallis H test was 

preferred (Kruskal and Wallis, 1952). 

6. Adjust the p-values that derived from the 

above tests using the Bonferroni correction 

(B. Alt, 2006). 

7. Select the statistically significant (p<0.05) 

features. 

8. Check those features for correlation using 

the Pearson formula (Chen and Popovich, 

2011). 

9. Features that had a high degree of 

correlation (0.8) were further examined and 

the worst performing features were 

removed. 

10. Utilize the training dataset with the 

remaining features and train a neural 

network model (Kalchbrenner et al., 2014) 

(these models yielded the best results in the 

type of data that were used) using an 

internal k-fold cross-validation with one 

hidden layer and an adjustable size (range 3 

to 15). 

 
The model that was created using data from 5 

subjects (4 healthy 1 patient) was tested using the 
remaining two subjects (1 healthy, 1 patient). The 
Leave-One-out (a healthy subject and a patient) cross-
validation approach was preferred over the k-fold 
cross-validation with train and test samples mixed 
from all using those 7 subjects, as this method is less 
biased, i.e., the hypothesis that patients and healthy 
subjects differ in their movement patterns can be 
examined without any bias that is inserted by utilizing 
the same subjects for testing and training. 

After testing the validity of our hypothesis that 
the movement patterns differ among healthy subjects 
and that pathological patterns can be identified using 
classifiers, we created a final set of 8 models, one for 
each direction. These models were trained with the 
dataset initially used in Phase 1 as a whole (P1,P2 and 
H1-5). These classifiers were afterwards used in 
Phase 2 on P3’s data as external validation. 

To observe the patients’ progress during their 
treatment, the data points of each feature were aligned 



in chronological order. Following, they were filtered 
using a simple moving average window as a low-pass 
filter to present the underlying trend. 

 
Table 1: The details of the best performing models. 

Balanced Acc stands for balanced accuracy, Sense for 

sensitivity, Spec for specificity, Mov. for Movement. 

Mov. 

type 

Test Data Balanc

ed Acc 

Sense Spec Truth Table 

u2d P1 – H4 0.979 0.979 0.979 

2157 2 

46 96 

dg1 P1 – H4 0.978 0.980 0.976 

1016 1 

20 41 

u2d P2 – H4 0.963 0.978 0.948 

1155 5 

25 93 

l2r P2 – H5 0.962 0.979 0.944 

1158 5 

24 85 

d2u P2 – H5 0.953 0.969 0.938 

1160 4 

37 61 

d2u P1 – H4 0.946 0.934 0.958 

2167 4 

153 93 

l2r P1 – H4 0.943 0.963 0.923 

2060 7 

78 85 

dg1 P1 – H1 0.942 0.983 0.901 

1019 5 

17 46 

 

Figure 4: Feature Selection Rate, defined as the number 

of times each feature is selected in the model, during the 

training phase with different training sets. 

4 RESULTS 

Overall, the sensitivity of the proposed models 
reached high levels (mean 95.35% sd 2.62%), while 

the specificity varied depending on which healthy 
subject was used for testing. Subjects H2 and H3 did 
not fit the created models well (mean specificity 
53.14% sd 14.44%), while subjects H1, H4, H5 
responded significantly better (mean specificity 
86.55% std 7,55%). Of note, when the above pipeline 
was performed with the exclusion of the H2 and H3 
subjects, there was a significant drop in the models’ 
metrics moving from ~95% to ~70%. This indicates 
that healthy subjects can be heterogeneous, and 
familiarity with games in general could be a reason 
behind that. The proposed methods allow for patients 
to be clustered into categories reflecting similar hand 
movement patterns as a result of similar 
neuromuscular disorders/physical trauma.  

Performing the above pipeline for all 10 
combinations of patient and health training set x 8 
movement direction (e.g., right to left) resulted in 80 
executions. The 8 best performing models based on 
the balanced accuracy metric are depicted on Table 1.  

The features finally utilized for the creation of 

each model varied based on the selected direction, 

and their p values varied also depending on the 

selected training dataset. Figure 4 shows the selection 

rate of each feature in the model creation. Out of the 

28 features examined, 23 appeared at least once with 

among the most common being the duration of the 

Movement (dt2) and Stabilization (dt3) time periods. 
Table 2 depicts the features used for the 

development of the best performing model (direction 
Top to Bottom, training P2|H1,H2,H3,H5, testing 
P1|H4). 

 
Table 2: Mean value for each feature per subject group 

(Patients, Healthy). Adjusted p was calculated using the 

Mann-Whitney U test.  

Feature Mean P Mean H Adjusted 

p 

distanceFromPre

viousWindow 

46.609 33.702 0 

distanceFromPre

viousHand 

44.59231 34.55598 0 

DT1 544.7925 460.2483 0.0036 

DT2 712.3987 261.6593 0 

DT2 1942.664 3633.71 0 

sdVelDT2 37.42379 17.34871 0 

meanVelDT2 50.25814 48.66921 0.004 

meanVelDT2Star

t 

41.81328 39.13429 0 

meanAccDT2 1350.74 1003.941 0 

sdVelDT2X 22.48586 10.47494 0 

meanVelDT2X 25.97193 20.89285 0 



sdVelDT2Y 30.99457 15.26332 0 

sdAccDT2X 21.06343 8.583197 0 

meanAccDT2X 23.09528 10.6853 0 

sdAccDT2Y 27.11824 13.2992 0 

meanAccDT2Y 29.69753 14.80098 0 

totalDistance 100.5733 92.49089 0 

totalDistanceT2 34.64196 14.41555 0 

totalDistanceT3 35.84011 60.09226 0 

minDistance 2.077342 1.231234 0 

minDistanceCent

er 

3.828137 2.726778 0.0285 

 
Figure 5. depicts a selection of 

subject/feature/direction combinations over the 
course of time for the patients during their 
physiotherapy. It translates to 9 months for P1 and 6 
months for P2. Significant spikes (top left) in certain 
features can probably be attributed to the changes in 
the difficulty settings in which the games were 
played. In all cases, the features that were found to be 
statistically significant, tended to improve over time 
towards the values that the healthy subjects had 
achieved. Some patient’s features show a steady 
improvement, at least regarding the data collected 
thus far, (bottom right, dt1). On the contrary, other 
features seem to reach a plateau over time (bottom left 
meanVelDT2Start) but at the same time not reaching 
the performance of healthy subjects. Whether this 
plateau is unsurmountable and characterizes the 
nderlying pathology, or some movement 
characteristics require more effort in order to improve 
over a certain point (top right), remains to be 
investigated. 

 

 
Figure 5: Features’ trend over time. X-axis depicts the 

gates the subject has played in chronological order. Top left 

subject:P1| direction: u2d|feature:meanVelDT2Start. Top 

right subject:P1| direction: l2r|feature:meanACCDT2X. 

Bottom left subject:P2| direction: 

l2r|feature:meanVelDT2Start. Bottom right subject:P2| 

direction: ud2|feature:DT1 

 
Table 3 shows the final classifiers’ performance 

when used on the external data that was P3. The 
classifiers achieved over 90% accuracy in identifying 
P3 as patient for 6 out of the 8 directions while the 
remaining two where in the high 80%. 

 
Table 3: Results of the final classifiers on the external 

dataset (P3).  

Movement 

type 

Total 

Gates 

Correct 

Gates 

False Gates Accuracy 

u2d 258 243 15 0.94186 

l2r 234 215 19 0.91880 

r2l 224 200 24 0.89285 

d2u 245 230 15 0.93877 

diag1 147 137 10 0.93197 

diag2 150 137 13 0.91333 

diag3 144 136 8 0.94444 

diag4 136 119 17 0.875 

 

5 DISCUSSION 

The detailed analysis presented in this work is based 
on a system that extends the use of Leap sensor for 
upper extremity’s functional rehabilitation exploiting 
the quite precise detection that is provided.  

Although there is distance to cover in the field for 
gamification approaches such as ours to reach their 
full potential as GaaHS, the presented results are 
promising and novel. Specifically, the presented 
approach stands out since it attempts to propose and 
evaluate quantified metrics regarding not only the in-
game performance but also the hand motion 
characteristics which reflect the underlying 
pathology.  

Looking at the score-based characterisation vs 
movement-feature based classification, patients P1 
and P2 achieved scores comparable to healthy 
subjects, while P3 had significantly lower scores than 
all the other subjects. The values of P3’s features 
were further away from the healthy subjects than the 
rest of the patients. This indicates that a single score 
of success or failure in undertaking a task is not 
always enough for a successful classification in the 
GaaHS scope. On the other hand, the proposed 
classifiers using movement features that carry a 



higher degree of information, were able to distinguish 
between healthy and pathological movement.   

One of the challenges that we encountered during 
this research was the parametrization of the game 
scenario which translates to a varied range of motor 
control exercises. The main problem was that 
introducing several variables would introduce a high 
degree of complexity and decrease the comparability 
of the data. Furthermore, a major challenge is the 
mapping of the game-specific features to generalized 
concepts that are applicable in other scenarios.  

Considering the limitations of the study, while the 
number of gates is high the number of patients and 
healthy subjects is low in terms of variability within 
the population. While this can be understood for this 
methodological study, a future wider study would be 
useful to provide a more concrete evidence and 
provide the correlation with the patients’ medical data 
and progress as recorded by the physician. In these 
next steps, the analysis will take into account the 
effect that settings with different difficulty may have 
on the result. The familiarization with the specific 
game as well as the subject’s general aptitude with 
video games, is something that can affect the 
subject’s performance, and needs also to be 
considered. 

Furthermore, while the motion specific classifiers 
(horizontal, vertical, diagonal) are useful in terms of 
detailed characterization, a unification of the 
classifiers will also be helpful in a clinical context, 
providing an answer for a subject’s clinical image 
regarding hand mobility as a whole and not divided 
in specific directions. 

6 CONCLUSIONS 

This analysis has shown promising results during the 
classification process especially as far as the patients 
are concerned, the inconsistencies in the performance 
of the healthy subjects can be attributed to the 
heterogeneity of the healthy population. Additional 
data will help in establishing a broader healthy 
baseline. In general, the patients were slower in their 
reaction time and had a greater distance from the gate 
center compared to the healthy subjects.  

Regarding future goals, our main objective is the 
quantification of patient’s progress and effort will be 
placed on matching their progress as indicated by our 
features to the commonly used scores regarding upper 
limb mobility, such as FMA-UE (Singer and Garcia-
Vega, 2017) and FIM (Hamilton et al., 1994).  

Next steps will also involve the level of difficulty 
in the analysis and define the optimal settings for 
patients that share common characteristics. 
Moreover, more complex feature extraction methods 

will be explored. Expanding the dataset both in terms 
of games and in subjects will facilitate a more robust 
statistical analysis and additionally will allow us to 
explore the clustering of patients based on their 
performance and progress. 
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